Efficacy of Cream-Based Novel Formulations of Hyaluronic Acid of Different MolecularWeights in Anti-Wrinkle Treatment

Tatjana Pavicic, b Gerd G. Gauglitz, b Peter Lersch, a Khadija Schwach-Abdellaoui, c Birgitte Malle, a Hans Christian Korting, b Mike Farwick c
b Evonik Goldschmidt GmbH, Essen, Germany
a Department of Dermatology and Allergology, Ludwig Maximilians University, Munich, Germany
b Novozymes Biopharma DR A/S, Bagsvaerd, Denmark

ABSTRACT

Background: Due to its strong water-binding potential, hyaluronic acid (HA) is a well-known active ingredient for cosmetic applications. Native HA is proposed to help the skin to retain and maintain elasticity, turgor and moisture.

Objective: To observe the efficacy of topical application of 0.1% hyaluronan formulations of different molecular weights (MW) (50, 130, 300, 800 and 2000 kDa, respectively) in the periorcular area as anti-wrinkle treatment.

Material and Methods: Seventy-six female subjects between 30 and 60 years of age with clinical signs of periorcular wrinkles applied one of the formulations twice-daily to the area of interest in a randomized fashion for 60 days. Around the other eye, a vehicle control cream was applied. Measurements of skin hydration and skin elasticity were performed before treatment, 30 and 60 days thereafter. At similar time points negative replicas were taken and evaluated by semi-automated morphometry.

Results: All HA-based creams utilized in this study demonstrated a significant improvement in skin hydration and overall elasticity values (R2) when compared to placebo. Measurements of wrinkle depth using mean roughness (Ra) and maximum roughness (Rz) values revealed significant improvement in the 130 and the 50 kDa HA group after 60 days of treatment compared to placebo-treated area.

Conclusion: Topical application of all 0.1% HA formulations used in this study led to significant improvement in skin hydration and elasticity. Application of low-molecular-weight (LMW) HA was associated with significant reduction of wrinkle depth, which may be due to better penetration abilities of LMW HA.

INTRODUCTION

Evidence of the clinical signs associated with skin aging often first appears in the periorbital area and includes wrinkles, eyelid bags, circles around the eye, or a “tired” appearance.1 Very few cosmetic preparations were shown to improve this situation using objective quantitative methods.

The physiological changes observed in chronologic aging skin are barrier function impairment, xerosis, loss of elasticity, slower turnover of epidermal cells and atrophy. There is a progressive reduction in water-binding capacity and changes in cutaneous permeability for chemical substances and increased production of free radicals. Moisturizers decelerate the loss of water from the surface of skin, maintain an appropriate level of skin humidity and minimize the aspect of fine wrinkles.2

The glycosaminoglycan hyaluronic acid (HA) is a major component of the extracellular matrix of the skin and plays an important role in the metabolism of the dermis.3 HA is especially important in the skin because these macromolecules are highly hydrophilic and can bind up to 1,000 times their volume in water. In the skin, this property is likely to be relevant in controlling tissue hydration.4 Due to these characteristics, HA is often used as a moisturizing agent in cosmetic formulations.

In the skin, HA might also act as a scavenger of free radicals and antioxidants under physiological conditions. Spectroscopic studies even indicate that a double bond in the D-glucuronic acid unit can form a complex with reactive oxygen species and reduce the toxicity of radicals.5 Furthermore, it plays a major role in the exchange between fixed tissue cells and blood and in cell migration. Recent studies suggest that HA, via the CD44 receptor, is capable of increasing cell differentiation and cell motility.6 HA also has anti-inflammatory properties and promotes wound healing.7
Native HA has been employed for several years to help the skin regain elasticity, turgor and moisture. In a clinical study, an increase in elasticity and turgor following repeated injections of HA could be demonstrated, but this treatment approach is discussed controversially.

Most HA preparations used either as topical formulations, wound dressings, native HA injections or as fillers contain non-animal-based HA molecules produced by bacterial fermentation from a specific strain of Streptococcus. In this study, for the first time, the HA molecules used were produced by Bacillus subtilis, thus also representing a non-animal derived raw material generally recognized as safe (GRAS).

Furthermore, according to our literature search using PubMed, this is the first publication addressing the effects of cream preparations containing hyaluronic acid of different molecular weights on skin hydration, skin elasticity and periorbital wrinkles in a group of volunteers using intrindividual comparison to the corresponding placebo cream.

PATIENTS, MATERIALS & METHODS

Study Cream Samples

Placebo cream represents an oil-in-water emulsion containing: aqua, hydrogenated polydecene, steareth-2, ceteth alcohol, steareth-21, phenoxyethanol, methylparaben, butylparaben, isobutylparaben, diazolidinyl urea and disodium EDTA (according to the INCI declaration).

HA cream formulations contain the same ingredients as placebo cream and additionally 0.1% sodium hyaluronate of different molecular weights (50, 130, 300, 800 and 2000 kDa, respectively).

HA used in these formulations was obtained through a protein-free process of fermentation based on a novel fermentation strain of the species Bacillus subtilis. Minimal medium with sucrose as the carbon source was used for culture and HA-macromolecules secreted into the medium without any cell association were obtained through a water-based recovery process. The HA-macromolecules generated this way are characterized by very high purity without any cell wall impurities, endo- or exotoxins, haemolytic activity and very low protein levels. The structure of Bacillus HA is identical to that of natural HA, which has been confirmed by enzymatic hydrolysis and MALDI-TOF analysis, Fourier-Transformation-Infared- (FTIR-) and High-Performance-Liquid-Chromatography- (HPLC-) Spectroscopy for monomer composition.

Study Design

Patients included in this study were divided into five groups. The inclusion criteria were Caucasian race, age between 30 and 60 years, either sex, and healthy physical state. The exclusion criteria were taking topical or systemic drugs that could affect the results of the test, pregnancy or breast-feeding, presence of skin diseases, history of intolerance to drugs and/or cosmetic products as well as not fulfilling inclusion criteria. For the entire duration of the study, the subjects were instructed not to use other products on the tested areas and to avoid exposure to UV radiation. Participation in the study was terminated earlier than foreseen either by decision of the subject or because of reasons correlated with treatment (exceptional irritant or allergic reactions). At the beginning of the study, each subject signed an informed consent declaration. Twelve women were treated either with the 0.1% formulation of HA of 50, 130 or 300 kDa and 20 women with the 0.1% formulation of HA of 800 and 2000 kDa, respectively.

In each group, the volunteers were randomized to apply twice-daily a topical cream formulation with HA of defined, yet differing molecular weights (50, 130, 300, 800 or 2000 kDa) to the periorcular area of one side of the face and the placebo cream as a control to the other side for two months. The side of application (left or right) on the face of the two creams was randomized.

The study was carried out in compliance with quality assurance system requirements, according to the principles of good laboratory practice (GLP) and good clinical practice (GCP), as well as the principles established by the World Medical Association in the Declaration of Helsinki.

The study investigations were carried out in a bioclimatic room (24°C; 50% room humidity) in order to keep the temperature and the humidity during the measurements constant. The patients were asked not to wash their face for at least three hours before performing the measurements. Instrumental measurements of skin hydration and elasticity were taken in the left and right periocular areas, marked out in a reproducible way, at the beginning of the study, after one month of treatment and at the end of the study. In the same areas, the micro-relief of stratum corneum was assessed by the image analysis of plastic replicas of the skin surface. Furthermore, digital photographs of the investigated areas were taken. The study was carried out in two subtrials; the measurements for 50, 130 and 300 kDa HA topical cream formulations were performed together and for 800 and 2000 kDa HA cream separately.

The data obtained were then recorded and later analysed and statistically compared.

Measurements

Skin Hydration

The measurements of skin hydration were performed using the Corneometer CM 825 (Courage & Khazaka, Cologne, Germany) as recommended by the manufacturer and described in former publications."
Skin Elasticity
Skin elasticity was assessed with a Cutometer SEM 575 (Courage & Khazaka), which measures the vertical deformation of the skin when sucked into the loop of a measuring probe and reversed into its original condition. The skin surface is sucked into the opening of a measuring probe, in which a constant level of depression is created (350 mbar) for an established time (one second). The air depression is then annulled and the released skin can return to its original position. Three measurement cycles were performed on the same spot. An optical system measures the variations in electrical capacitance. They are proportional to the rise of the skin surface which has been measured (expressed in mm). The skin rises were shown on Cartesian axes, where the deformation of the skin (expressed in mm) is a function of time (expressed in seconds). Accordingly, the three suction/release cycles were represented as three successive curves, which allow the measurement of the deformation parameters relating to the elastic features of the skin.

In the final calculation of the results, the following parameters were considered (Figure 1):

FIGURE 1. Skin deformation in mm as a function of time as measured with the Cutometer.

\[\text{Ua} = \text{Total deformation recovery at the end of the stress-off period; } \\
\text{Uf} = \text{Total extensibility of the skin; } \\
\text{Uv} = \text{Viscoelastic creep occurring after the elastic deformation; } \\
\text{Ur} = \text{Elastic deformation recovery due to the stress-off period; } \\
\text{Ue} = \text{Elastic deformation of the skin due to the application of stress; } \\
\text{R} = \text{Amount of deformation not recovered by the end of the stress-off period.} \]

In the final calculation of the results, the parameter:
- \(\text{Uf} \) (maximal deformation of the skin) was referred to as \(R_0 \) parameter;
- \(\text{Ua} / \text{Uf} \) ratio referred to as parameter \(R_2 \) representing the overall elasticity;
- \(\text{Uv} / \text{Ue} \) ratio referred to as \(R_6 \) parameter representing the viscoelastic ratio.

Wrinkle Depth
The anti-wrinkle effects of the various preparations were analyzed using replicas with the help of a profilometer equipped with an image analyzer. In order to obtain negative imprints of the skin surface (skin replicas), the following materials were used: a fast-hardening synthetic polymer (Silflow, Flexico Developments Ltd, London, UK) and adhesive discs (24x40, 3M, Neuss, Germany).

The adhesive discs were put onto the subject's skin in order to delimit the investigated area and to avoid skin stretching during the polymer application. A small amount of polymer was then spread into the internal circular area of every disc and left in situ for a few minutes until it became dry. The disc was then removed and processed further.

For the calculation of Ra, the mean roughness value and Rz, the maximum roughness value, especially describing the deep wrinkles, the silicon replicas of the cutaneous surface were lightened by a grazing light source with a defined incident angle (35°), with the purpose of generating shadows which are wider when furrows are higher. The main wrinkles must be oriented perpendicularly to the incident light. Using the High Performance Charge Coupled Device (CCD) camera (COHU, Inc., Electronics Division, San Diego, CA, USA) an image of the skin replica covering an area of 12x9 mm was taken.

The anti-wrinkle efficacy of a treatment can be judged by a decrease of Ra and/or Rz values at the end of the treatment.

Digital photographs of the pericircular area were also taken at the beginning of the test and after one respectively two months of treatment. The images were taken by means of a Nikon Coolpix 5000 digital camera (Nikon Corporation, Tokyo, Japan).

Statistical Analysis
The mean value of three corneometry readings taken in contiguous spots of the same area was considered for further calculations. Mean values and standard deviations were calculated for initial and final instrumental values (addressing hydration, elasticity and image analysis) recorded in the two areas (verum, placebo) at the three checks.

Furthermore, the variation of the parameter was calculated as a difference between the mean values obtained at the end of the treatment or after one month and the mean values at the beginning of the treatment for the left and right pericircular area. This difference is reported as percentage of variation, 100.

The basal \((T_{b}) \), intermediate \((T_{i}) \) and final values \((T_{f}) \) of the two considered areas (one treated with the HA topical cream formulation and another with the placebo cream) were compared to each other by means of the paired samples t-test. The groups of data were considered significantly different for a
TABLE 1.
The Effects of Topical HA Formulations on Skin Hydration (Corneometric Units) in Comparison to an Untreated Area: Mean Values

<table>
<thead>
<tr>
<th>HA Formulation</th>
<th>T1</th>
<th>T30</th>
<th>T60</th>
<th>Variation (T60-T1)</th>
<th>Variation (T60-T30)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 kDa HA</td>
<td>59.8±10.5</td>
<td>64.5±6.7</td>
<td>69.2±6.7</td>
<td>+4.7 (7.9%)</td>
<td>+9.4* (15.8%)</td>
</tr>
<tr>
<td>130 kDa HA</td>
<td>59.2±10.8</td>
<td>64.8±10.0</td>
<td>65.0±8.0</td>
<td>+5.6* (9.5%)</td>
<td>+6.8* (9.8%)</td>
</tr>
<tr>
<td>300 kDa HA</td>
<td>55.8±9.4</td>
<td>60.7±8.1</td>
<td>63.5±8.5</td>
<td>+4.9 (8.8%)</td>
<td>+7.7* (13.8%)</td>
</tr>
<tr>
<td>800 kDa HA</td>
<td>52.7±6.0</td>
<td>55.9±5.8</td>
<td>55.4±5.5</td>
<td>+3.2* (6.1%)</td>
<td>+2.7** (5.1%)</td>
</tr>
<tr>
<td>2000 kDa HA</td>
<td>55.7±7.1</td>
<td>52.8±9.1</td>
<td>57.3±9.1</td>
<td>-2.9 (-5.2%)</td>
<td>+1.6 (2.9%)</td>
</tr>
</tbody>
</table>

*P<0.05; **P<0.01.

Skin Hydration

In comparison to the values found before treatment with 800 kDa HA cream formulation, there was an increase in skin hydration of 6.1 percent after one month of treatment (P<0.05) and also at the end of the study of 5.1 percent (P<0.01). In the areas treated with HA formulations of 2000, 300, 130 or 50 kDa, respectively, an increase, equal to 2.9 percent, 13.8 percent, 9.8 percent and 15.8 percent in the mean basal skin hydration was achieved after two months of application when compared to the beginning of the study (P<0.05, except for the 2000 kDa HA formulation; Table 1).

In comparison to the placebo-treated area in the same subject, significant differences in skin hydration could be reported for cream-based HA formulations of all sizes except 50 kDa. While treatment with a 130 kDa HA cream formulation resulted in a significantly increased hydration at one and two months thereafter, application of cream formulations containing 300, 800 and 2000 kDa HA (P<0.05), respectively, was only associated with significantly increased hydration at the two month time point (Figure 2a-e).

Skin Elasticity

The values for maximal skin deformation (R0) showed a prominent decrease for 800 kDa HA cream after one month and two months of treatment, equal to 7.2 percent (P<0.01), as well as for 50 kDa HA cream (-21.8%) after one month (P<0.05) when compared to the values before treatment. All the other treated areas did not show any major changes in R0 values (P>0.05; Table 2a). When compared to the placebo-treated areas, only the treatment with 800 kDa HA cream resulted in prominent changes after one as well as after two months (P<0.05; Table 2b).

Wrinkle Depth

The areas treated with the formulation of HA of 800 kDa showed a decrease in comparison to the untreated area a decrease in the mean roughness values (Rq) after one month (-8.4%) and with 130 kDa (-10.8%) after two months, respectively (P<0.01; Table 5a). At the end of the study, the application of cream with HA of 800 kDa (-9.9%) as well as with 300 kDa (-17.7%) resulted in a clear decrease (P<0.05) in Rq values compared to the start values (Table 6a). Compared to the placebo treatment, only the topical application of 130 kDa HA-based cream resulted in a significantly lower Rq value after two months of treatment (P<0.05; Figure 4a).

In comparison to the values for untreated areas, the maximum roughness values (R2 = wrinkle depth) showed a major decrease after the application of 50, 130 and 800 kDa HA cream after one (-10.2%, -5.3% and -4.9%) as well as after two months (-11.0%, -8.1% and -6.2%; P<0.05). No such changes were detected in the
areas treated with other HA formulations either after one or two months (Table 5b). In comparison to the placebo-treated area, only the treatment with 50 kDa HA cream resulted in significantly smaller Rz values and clinical improvement at one and two months of treatment (P<0.05; Figures 4b and 5a-c).

The effects of cream-based HA formulations of different molecular weights on different parameters after one month and two months of treatment compared to placebo are summarized in Table 6a and b. Even though no close correlation between the molecular weight of the respective HA molecules in the formul-
Summarily mediated through hyaluronan-binding proteins and alterations in the localization of hyaluronans with a steady decline of HA in the upper epidermal layer and concomitant increases in the basal layer of the epidermis and the upper portions of the papillary dermis. The consequence of these age-dependent changes of hyaluronans is probably a declined water binding capacity.

Furthermore, confocal laser microscopy reveals that GAGs in photodamaged skin are abnormally deposited on elastotic material in the superficial dermis, rather than diffusely scattered as in young skin. This aberrant localization may interfere with normal water binding capacity of GAGs, especially of HA, despite their increased general levels. These factors likely contribute to increased xerosis and withered appearance of aged skin.

Correspondingly, many topical anti-aging products contain HA and many companies claim its efficacy, but so far unequivocal evidence for the efficacy in the treatment of facial wrinkles has been missing. Furthermore, HA has been considered to be unable to penetrate the skin upon topical application.

In this in vivo study examining objectively the anti-aging and anti-wrinkle properties of HA-based creams of different HA molecular size, all HA-based creams showed an improvement of skin hy-
duration. The parameter of elasticity did not change in the same way for all HA formulations. After two months of treatment, the maximum skin deformation (R0) was improved only for 800 kDa, the overall elasticity values (R2) for all HA-based creams, and viscoelastic ratio (R6) for 50 and 2000 kDa. The measurements of wrinkle depth also revealed differences between the creams with HA of different molecular weights. After 60 days, mean roughness values (Ra) showed an improvement for 130, 300 and 800 kDa HA. The values of maximum roughness (corresponding to the deepest wrinkle) were improved even after one month of treatment with cream-based formulation with 50, 130 and 800 kDa.

Bars represent means; error bars correspond to S.E.M. Asterisks denote statistical significance: *p<0.05 for every comparison between groups.

With respect to the anti-wrinkle properties, only the 50 and 130 kDa HA-based creams showed marked effects in comparison to the placebo cream after two months. Interestingly, all HA formulations showed a strong difference when compared to placebo for the overall elastic values after two months.

One possible mechanism explaining this effect may be the classical role of HA as a potent water-binding agent explained before. Another may be the action of HA as an anti-inflammatory agent. Chronic inflammation is a well-known contributor to the degradation of collagen, elastin and genuine HA. Skin inflammation is also known as sequelae of free radicals directly acting on cytokine and growth factor receptors in dermal cells and keratinocytes. These are known to play a role in skin aging, but the exact nature of their significance has not yet been clarified. Presently, this process is thought to be induced by UV exposure, which affects growth factor and cytokine receptors, contributing to downstream signal transduction by spurring mitogen-activated protein (MAP) kinase pathways and triggering the matrix-metalloproteinase-1 (MMP-1) and MMP-2. Therefore, reducing inflammation may very well be another rewarding approach to preventing wrinkle formation. In previous studies, high-molecular-weight HA (HMWHA) has been reported to act in an anti-angiogenic manner, whereas low-molecular-weight HA...
FIGURE 4. The effects of topical HA formulations containing A) 130 and B) 50 kDa HA on roughness values (Ra, a) and maximum roughness values (Rz, B) reported as percentage of variation) in comparison to a placebo-treated area.

TABLE 4a.
The Effects of Topical HA Formulations on Skin Elasticity Parameter Viscoelastic Ratio (R6) in Comparison to Untreated Area: Mean Values

<table>
<thead>
<tr>
<th>HA Concentration</th>
<th>T_a</th>
<th>T_m</th>
<th>T_3a</th>
<th>T_3m</th>
<th>Variation (T_a-T_m)</th>
<th>Variation (T_3a-T_3m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 kDa HA</td>
<td>0.243±0.054</td>
<td>0.194±0.046</td>
<td>0.155±0.030</td>
<td>-0.049 (-20.2%)</td>
<td>-0.088** (-36.2%)</td>
<td></td>
</tr>
<tr>
<td>130 kDa HA</td>
<td>0.141±0.057</td>
<td>0.162±0.058</td>
<td>0.141±0.026</td>
<td>+0.021 (14.9%)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>300 kDa HA</td>
<td>0.156±0.047</td>
<td>0.174±0.089</td>
<td>0.136±0.023</td>
<td>-0.018 (11.5%)</td>
<td>-0.020 (-12.9%)</td>
<td></td>
</tr>
<tr>
<td>900 kDa HA</td>
<td>0.251±0.040</td>
<td>0.242±0.036</td>
<td>0.237±0.040</td>
<td>-0.009 (-3.5%)</td>
<td>-0.014 (-5.6%)</td>
<td></td>
</tr>
<tr>
<td>2000 kDa HA</td>
<td>0.213±0.099</td>
<td>0.190±0.102</td>
<td>0.173±0.089</td>
<td>-0.023 (-10.8%)</td>
<td>-0.040** (-18.8%)</td>
<td></td>
</tr>
</tbody>
</table>

*p<0.05; **p<0.01.

TABLE 4b.
The Effects of Topical HA Formulations on Skin Elasticity Parameter Viscoelastic Ratio (R6) in Comparison to Placebo-Treated Area

<table>
<thead>
<tr>
<th>HA Concentration</th>
<th>(T_a - T_m) verum-treated area versus (T_m - T_m) placebo-treated area</th>
<th>(T_3a - T_3m) verum-treated area versus (T_3m - T_3m) placebo-treated area</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 kDa HA vs. placebo</td>
<td>p<0.05</td>
<td>p<0.05</td>
</tr>
<tr>
<td>130 kDa HA vs. placebo</td>
<td>p<0.05</td>
<td>p<0.05</td>
</tr>
<tr>
<td>300 kDa HA vs. placebo</td>
<td>p<0.05</td>
<td>p<0.05</td>
</tr>
<tr>
<td>800 kDa HA vs. placebo</td>
<td>p<0.05</td>
<td>p<0.05</td>
</tr>
<tr>
<td>2000 kDa HA vs. placebo</td>
<td>p<0.05</td>
<td>p<0.05</td>
</tr>
</tbody>
</table>

*p<0.05; **p<0.01.
FIGURE 5. Photographs of right periorbital area a) before, b) after 4
and c) after 8 weeks of treatment with 50 kDa HA cream 0.1%.

ers have been able to ascertain that skin ageing (extrinsic, but also intrinsic) is marked by elevated AP-1 activity and
MMP expression, inhibited transforming growth factor β (TGFβ) signalling, as well as reduced collagen synthesis and
greater collagen degradation.26

In several studies, HA has been shown to be able to reduce the
inflammatory reaction in different tissues.4 In synovium, ex-
pression of MMP-3 and interleukin-1β (IL-1β) was suppressed
in the mild grades of osteoarthritis after the intra-articular in-
jection of HA.21 The inhibition of IL-1β action by HA has been
shown to be mediated by CD44, the principal HA receptor.22
Furthermore, it has been demonstrated that HA suppresses
IL-8-1-enhanced MMP-1 and MMP-3 synthesis in rheumatoid
synovial fibroblasts via intercellular adhesion molecule-1
(ICAM-1) through downregulation of NF-κB and p38.

In this in vivo study examining the anti-aging and anti-wrinkle properties of HA-based creams of different HA molecular
sizes, all HA-based creams showed an improvement of skin hydration and some in skin elasticity and wrinkle depth in
the periorbital region as compared to the placebo cream, some of them as early as after one month of application.

In this in vivo study examining the anti-aging and anti-wrinkle
properties of HA-based creams of different HA molecular sizes, all HA-based creams showed an improvement of skin hydration and some in skin elasticity and wrinkle depth in the periorbital region as compared to the placebo cream, some of them as early as after one month of application. Furthermore, objective measurement methods were used to document the effects—and not only a photo documentation and subjective assessment by the investigator and the volunteer. Although the epidermal and dermal concentra-
tion of HA were not examined before or after the treatment, the reported data suggest that these novel HA molecules are able to penetrate into the skin after topical application and reduce the
aging process, contrary to the claims of Bauman and Rieger.27

One possible explanation for this might be a novel source of
HA; the structural identity of B. subtilis-generated HA with the
natural HA might well be of note.

According to our not yet published data, the LMWHA with a
MW of 50 kDa has been demonstrated to have the best pen-
etration and anti-inflammatory potential of all examined HA
molecules (130, 300, 800 and 2000 kDa) in vitro.

UV light, the main causal factor for the extrinsic component
of skin aging, significantly upregulates the synthesis of sev-
eral types of collagen-degrading enzymes known as MMPs,
specifically collagenase MMP-1 and gelatinase MMP-2.19 By
characterizing the wide-ranging effects of UV in activating
cell surface growth factor and cytokine receptors, research-

(LMWH-A) is highly angiogenic, attracting inflammatory cells and
also inducing expression of inflammatory cytokines.3

398
TABLE 5a.
The Effects of Topical HA Formulations on the Mean Roughness (Ra) Values in Comparison to Untreated Area: Mean Values

<table>
<thead>
<tr>
<th>HA MW (kDa)</th>
<th>T6</th>
<th>T30</th>
<th>T60</th>
<th>Variation (T60-T6)</th>
<th>Variation (T60-T30)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>29.6±2.6</td>
<td>28.4±5.3</td>
<td>27.1±5.6</td>
<td>-1.2 (-4.1%)</td>
<td>-2.5 (-8.4%)</td>
</tr>
<tr>
<td>130</td>
<td>27.9±3.3</td>
<td>26.1±2.3</td>
<td>24.9±1.8</td>
<td>-1.8 (-6.5%)</td>
<td>-3.0 (-10.8%)</td>
</tr>
<tr>
<td>300</td>
<td>27.6±5.1</td>
<td>24.8±4.1</td>
<td>22.7±4.4</td>
<td>-2.8 (-10.1%)</td>
<td>-4.9 (-17.7%)</td>
</tr>
<tr>
<td>800</td>
<td>35.80±7.45</td>
<td>32.81±7.53</td>
<td>32.24±6.86</td>
<td>-2.99** (-8.4%)</td>
<td>-3.56* (-9.9%)</td>
</tr>
<tr>
<td>2000</td>
<td>24.66±3.32</td>
<td>24.64±2.60</td>
<td>24.55±3.19</td>
<td>-0.02 (-0.1%)</td>
<td>-0.11 (-0.4%)</td>
</tr>
</tbody>
</table>

*P<0.05; **P<0.01.

TABLE 5b.
The Effects of the Topical HA Formulations on the Maximum Roughness (Rz) Values in Comparison to an Untreated Area: Mean Values

<table>
<thead>
<tr>
<th>HA MW (kDa)</th>
<th>T6</th>
<th>T30</th>
<th>T60</th>
<th>Variation (T60-T6)</th>
<th>Variation (T60-T30)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>156.7±13.6</td>
<td>140.7±25.0</td>
<td>139.4±13.0</td>
<td>-16.3 (-10.2%)</td>
<td>-17.3 (-11.0%)</td>
</tr>
<tr>
<td>130</td>
<td>105.1±9.8</td>
<td>99.5±8.4</td>
<td>96.6±12.2</td>
<td>-6.6 (-5.3%)</td>
<td>-8.5 (-8.1%)</td>
</tr>
<tr>
<td>300</td>
<td>161.30±23.91</td>
<td>157.98±19.26</td>
<td>162.22±20.06</td>
<td>-3.32 (-2.1%)</td>
<td>+0.92 (0.6%)</td>
</tr>
<tr>
<td>800</td>
<td>177.4±17.2</td>
<td>168.7±16.3</td>
<td>166.4±17.9</td>
<td>-8.7 (-4.9%)</td>
<td>-11.0 (-6.2%)</td>
</tr>
<tr>
<td>2000</td>
<td>115.98±17.28</td>
<td>115.67±18.21</td>
<td>114.58±16.74</td>
<td>-0.31 (-0.3%)</td>
<td>-1.00 (-0.9%)</td>
</tr>
</tbody>
</table>

*P<0.05; **P<0.01.

TABLE 6a.
The Effects of Cream-Based HA Formulations of Different Molecular Weights on Different Parameters After One Month in Comparison to Placebo

<table>
<thead>
<tr>
<th>HA MW (kDa)</th>
<th>Corneometry</th>
<th>R6</th>
<th>R2</th>
<th>R6</th>
<th>Ra</th>
<th>Rz</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
</tr>
<tr>
<td>130</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
</tr>
<tr>
<td>300</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
</tr>
<tr>
<td>800</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
</tr>
<tr>
<td>2000</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
</tr>
</tbody>
</table>

Ø: P>0.05; †: P<0.05; ††: P<0.01

TABLE 6b.
The Effects of Cream-Based HA Formulations With Different Molecular Weights on Different Skin Parameters After Two Months in Comparison to Placebo

<table>
<thead>
<tr>
<th>HA MW (kDa)</th>
<th>Corneometry</th>
<th>R6</th>
<th>R2</th>
<th>R6</th>
<th>Ra</th>
<th>Rz</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
</tr>
<tr>
<td>130</td>
<td>††</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
</tr>
<tr>
<td>300</td>
<td>†</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
</tr>
<tr>
<td>800</td>
<td>†</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
</tr>
<tr>
<td>2000</td>
<td>††</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
</tr>
</tbody>
</table>

Ø: P>0.05; †: P<0.05; ††: P<0.01
Although in this study the relation between the molecular weight of HA molecules in the formulation and its anti-aging and anti-wrinkle potential in the periorbital region did not show a generally close correlation (Table 6a and b), the molecular weight might nevertheless play an important role, especially in the UV-induced inflammatory changes in the aging process. Future clinical intra-individual comparative studies of HA formulations with HA molecules of different molecular weights as well as in vivo examination of HA-induced changes addressing molecular parameters, like MMPs, different cytokines and growth factors and their receptors, are needed to bring more light into this complex field.

DISCLOSURES
This study was funded by Evenik Goldschmidt, Essen, Germany and by Novozymes Biopharma DK A/S, Bagsvaerd, Denmark. Mike Farwick and Peter Lerach are employees of Evenik Goldschmidt. Khadija Schwach-Abbeliau and Birgitte Malle are employees of Novozymes Biopharma. Hans Christian Korting, Gerd G. Gauglitz and Tatjana Pavicic do not have any relevant conflicts of interest to disclose besides the already mentioned.

REFERENCES
11. Andrè D, De Van M, Lefèvre RThonnard JL. Moisture Evaluator: A direct measure of fingertip skin hydration during ob-